Plaidoyer pour une modélisation des données à l'échelle de l'entreprise
Gouvernance, efficacité, performance... sont à portée de main, pourvu qu'on se penche sérieusement sur un processus fondamental qui structure l'information de son SI.
Framework utile pour désenclaver les données, le datamesh demande une certaine maturité dans l'approche pour ne pas retomber dans de vieux travers.
Quelques années après son apparition, le concept de data mesh (ou datamesh) reste énigmatique pour nombre d'entreprises. Quand il n'est pas désigné comme le Graal ! Avec le recul, on peut dire que oui, le datamesh, c’est un peu du meilleur de chaque monde adapté aux enjeux spécifiques de la data pour les entreprises.
Le framework est utile et a déjà prouvé son efficacité chez un grand nombre de clients - à condition de ne pas faire l’économie d’une gouvernance des données maîtrisée et déployée à l’échelle au risque d’aboutir à des bastions et de retomber dans les problèmes d’enclavement des données.
Le datamesh est un cadre conceptuel qui englobe plusieurs dimensions et repose sur la notion de fédération. Nous connaissions ses aspects d’architecture du SI : découper les systèmes informatiques en domaines indépendants et autonomes associés à une approche produit, les doter d’une couche d’interface (API ou autre) et de la documentation associée pour que le reste de l’organisation puisse venir consommer les produits.
En 2023, le datamesh s’est particulièrement illustré dans ses impacts organisationnels en entreprise. L’article fondateur de Zahmak Deghani de 2019 propose d’ailleurs avant tout un moyen de sortir de l’impasse aux entreprises qui ont une organisation complexe, morcelée et parfois silotée. C’est un chemin possible pour ces entreprises, qui n’ont pas réussi à créer un point de vérité central d’entreprise avec une gouvernance forte et un partage exhaustif du patrimoine de données via un datalake maîtrisé et performant.
D’un point de vue organisationnel, le datamesh propose de s’aligner sur la vision Produit, à savoir : chaque unité de production (souvent un domaine data croisé d’un domaine métier) est responsable de bout en bout des produits qu’elle est en capacité de proposer à ses clients. L’unité de production dispose de tous les moyens nécessaires pour produire et est en capacité de prendre des décisions sur les évolutions à implémenter pour servir au mieux ses clients.
La gestion de la plateforme technique reste la prérogative de la DSI, qui elle aussi adopte le mode d'interaction du produit et travaille à mettre à disposition son produit : la plateforme data composée de l’ensemble des éléments de stockage, des flux et outils d’exploitation et surveillance associés au périmètre data.
● la data gouvernance avec des règles et standards uniformes pour l’ensemble de l’entreprise. La data gouvernance peut être traitée par une équipe “chapeau” de l’organisation data si elle a ses points de relais dans les différents domaines. Sinon elle peut être intégrée au dessus de l’équipe plateforme et s’associer aux équipes plateforme.
● la gestion du patrimoine data de l’entreprise qui doit être matérialisé dans un set documentaire partagé avec l’ensemble des collaborateurs. La documentation des données, de leurs transformations et des domaines owners est soit décentralisée dans les domaines, soit centralisée au dessus de l’équipe plateforme. La donnée est alors pensée “as-a-service” et constitue une brique complémentaire du mesh.